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Abstract

A new Discontinuous Galerkin Formulation is introduced for the elliptic reaction-
diffusion problem that incorporates local second order distributional derivatives.
The corresponding bilinear form satisfies both coercivity and continuity properties
on the broken Hilbert space of H2 functions. For piecewise polynomial approxima-
tions of degree p ≥ 2, optimal uniform h and p convergence rates are obtained in
the broken H1 and H2 norms. Convergence in L2 is optimal for p ≥ 3, if the compu-
tational mesh is strictly rectangular. If the mesh consists of skewed elements, then
optimal convergence is only obtained if the corner angles satisfy a given regularity
condition. For p = 2, only suboptimal h convergence rates in L2 are obtained and
for linear polynomial approximations the method does not converge.
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1 Introduction

Several variations of Discontinuous Galerkin Methods (DGM’s) for second or-
der elliptic boundary value problems have been proposed during recent years,
which exhibit special convergence, conservation and local approximation prop-
erties attractive for parallel adaptive hp-approximations. A comprehensive ac-
count of several types of DGM’s can be found in the volume edited by Cock-
burn, Karniadakis and Shu [1], in the paper of Arnold, Brezzi, Cockburn, and
Marini [2], and in the report by Prudhomme et al. [3].

In 1997, Oden, Babuška, and Baumann [4] introduced a discontinuous Galerkin
formulation similar to the GEM formulation by Delves et al. [5,6], but sign
differences in certain terms resulted in a positive definite bilinear form. For
p ≥ 2 (where p denotes the minimum order of the polynomial approximations),
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the DGM by Oden, Babuška, and Baumann appears to be unconditionally
stable, whereas the GEM formulation requires the inclusion of penalty terms
to stabilize the formulation. Complete details are given in [7].

Rivière et al. [8–10] proposed an extension of the DGM of Oden, Babuška, and
Baumann by including a penalty term on the jumps of the solution across the
element interfaces. The formulation, due to the addition of a penalty term,
does not satisfy a local conservation property any longer, but it becomes stable
for p = 1. Moreover, optimal h and suboptimal p convergence rates are proved
in the broken H1 space.

In this paper, a new DGM formulation is presented for a model class of linear
elliptic boundary value problems, that incorporates the second order distri-
butional derivatives, and consequently is defined within the space of local H 2

functions. The formulation does not require any penalization or stabilization,
exhibits a local conservation property, and guarantees optimal uniform h and
p convergence in the broken H2 and H1 spaces when the order of polyno-
mial approximation is at least of degree ≥ 2. This is an improvement over
other DGM formulations for which optimal h convergence has been proved
but optimal p convergence rates have not been established.

This formulation exhibits eccentric convergence behavior in L2. When the
computational meshes employ solely rectangular elements, it is proved (and
numerically confirmed) that optimal h and p convergence rates hold for poly-
nomial approximations of degree ≥ 3. For skewed meshes, we can prove that
under certain conditions the error can converge optimally. However, in practi-
cal computational applications, we expect such cases to be rare and one should
generally expect suboptimal convergence rates in L2(Ω).

This is not the first DGM that uses second order derivatives. In the works by
Engel et al. [11,12], these derivatives are also incorporated by adding Galerkin
Least Squares (GLS) stabilization terms to existing DGM’s. The DGM in-
troduced in this paper starts with GLS terms on each element that are the
variational equivalent of a model reaction-diffusion problem. The final for-
mulation is then derived by applying classical Green’s identities (see proof
of Lemma 2) to the GLS terms and enforcing continuity across the element
interfaces and boundary conditions on the outer boundary.

The outline of this paper is as follows: in Section 2, the model problem, no-
tations, the proper function space setting, and the new DGM are introduced.
Subsequently, the convergence properties of the DGM are proved in Section 3.
In Section 4, the theoretical results are confirmed on one- and two-dimensional
problems. Section 5 concludes with a brief summary of results.
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2 The New DG Formulation

2.1 Model Problem and Notations

Let Ω ⊂ R2 be an open bounded domain with Lipschitz boundary ∂Ω, and

∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅,

where ΓD denotes the part of the boundary with prescribed Dirichlet boundary
conditions and ΓN the part subjected to flux, or Neumann, conditions. Let Ph

be a regular partition of Ω into N open elements {Ki} with diameters {hi},
such that (see Figure 1):

Ω = int

(
N⋃

i=1

Ki

)

. (1)

The maximum diameter in the partition is denoted as h and the unit normal
vector ni on the edge ∂K i of Ki ∈ Ph is directed outward with respect to
the element Ki (see Figure 1). Given an element Ki ∈ Ph, the part of the
boundary of ∂K i that is shared with a neighboring element Kj is denoted
∂Kij, i.e.

∂Kij = ∂K i ∩ ∂Kj. (2)

Note that ∂Kij is an open subset of ∂Ki. We now consider the following
reaction-diffusion-type model problem:

Find u, such that :

−∆u+ u = f, inΩ

u = u0, on ΓD

∇u · n = g, on ΓN

(3)

Ki

∂Ω

Ω ⊂ R2

∂Ki

ΓD

ΓN

g

ni

Ki

Fig. 1. Geometrical definitions

3



where f , the source term, is a real-valued function in L2(Ω), and the Dirichlet
and Neumann boundary data, u0 and g, are respectively in H3/2(∂Ki ∩ ΓD)
and in H1/2(∂Ki ∩ ΓN), for all Ki ∈ Ph whose edges intersect with ∂Ω.

2.2 The Broken Banach Space of Test Functions

Given the partition Ph, the following broken space is defined:

H2(Ph) =
{

v ∈ L2(Ω) : v|Ki ∈ H2(Ki), ∀Ki ∈ Ph
}

, (4)

We introduce two norms on this space,

‖v‖2H2(Ph)
=

N∑

i=1

{

‖∇2v‖2L2(Ki)
+ 2 ‖∇v‖2L2(Ki)

+ ‖v‖2L2(Ki)

}

,

|||v|||2 =
N∑

i=1

{

‖∆v‖2L2(Ki)
+ 2 ‖∇v‖2L2(Ki)

+ ‖v‖2L2(Ki)

}

,

(5)

where the first uses the local Sobolev norms in H2(Ki) and the latter the
Laplacian norms. Within this setting, we introduce the local zeroth and first
order trace operators [13,14] for functions on Ki ∈ Ph:

γi0 : H1(Ki) −→ H1/2(∂K i),

γi1 : H2(Ki) −→ H1/2(∂K i),

(6)

where γi1(vi) represents the trace of the normal derivative ∂vi/∂n on ∂Ki. We
define the norm on H1/2(∂K i) as follows [13]:

‖ϕ‖H1/2(∂Ki)
def
= inf

v∈H1(Ki)
γi
0
(v)=ϕ

‖v‖H1(Ki),

Remark 1 (Trace Inequalities) Let Ph consist of elements {Ki} with Lips-
chitz boundaries. Then, the trace operators (6) are continuous and surjective
(see [13]),

‖γi0(vi)‖H1/2(∂Ki) ≤ ‖vi‖H1(Ki),

‖γi1(vi)‖H1/2(∂Ki) ≤ C ‖vi‖H2(Ki), C > 0.

(7)
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2.3 The Weak Formulation

The discontinuous variational formulation is stated as follows:

Find w ∈ H2(Ph) :
B(w, v) = L(v), ∀v ∈ H2(Ph),

(8)

where the bilinear form B(·, ·) and linear form L(·) are defined as:

B : H2(Ph)×H2(Ph) −→ R, L : H2(Ph) −→ R,

B(w, v) =
N∑

i=1

{
∫

Ki

[

∆wi∆vi + 2∇wi ·∇vi + wivi
]

dx

+
∑

∂Kij⊂∂Ki

∫

∂Kij

[

γj1(wj)γ
i
0(vi)− γj1(vj)γ

i
0(wi)

]

ds

−
∫

∂Ki∩ΓN
γi1(vi) γ

i
0(wi) ds−

∫

∂Ki∩ΓD
γi1(wi) γ

i
0(vi) ds

}

,

L(v) =
N∑

i=1

{
∫

Ki

f(−∆vi + vi) dx+
∫

∂Ki∩ΓD
γi1(vi)u0 ds

+
∫

∂Ki∩ΓN
g γi0(vi) ds

}

,

(9)

where vi denotes v|Ki
. Analogous to the DG formulation by Oden, Babuška,

and Baumann [4], this formulation satisfies local balance of conservation laws.
By taking a function v such that v = 1 on an element Ki ∈ Ph and v = 0
elsewhere, (8) and (9) give us:

∫

Ki

wi dx−
∫

∂Ki∩ΓD
γi1(wi) ds =

∫

Ki

f dx−
∑

∂Kij⊂∂Ki

∫

∂Kij

γj1(wj) ds

+
∫

∂Ki∩ΓN
g ds.

Let w be a solution of (8). Then the left hand side of the above expression
represents the reaction ‘forces’ of the element to external body and boundary
loads (right-hand side). Moreover, we can prove that w satisfies the PDE (3)
and belongs to the following space:

H(∆,Ω) =

{

v ∈ L2(Ω) : ∆v ∈ L2(Ω)

}

.

Lemma 1 Let f ∈ L2(Ω), g ∈ H1/2(∂K i∩ΓN) and u0 ∈ H3/2(∂K i∩ΓD), and
suppose w ∈ H2(Ph) is a solution to the discontinuous Variational Boundary
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Value Problem (VBVP) (8). Then, w satisfies the PDE (3) in the distribu-
tional sense and belongs to H(∆,Ω) ∩H2(Ph).

Proof: By taking an arbitrary Ki ∈ Ph and choosing a smooth test function v
that vanishes outside Ki, then (8) and (9) yield:

∫

Ki

[

∆wi∆ϕi + 2∇wi ·∇ϕi + wiϕi
]

dx =
∫

Ki

f(−∆ϕi + ϕi) dx.

Application of Green’s first identity to the integral of 2∇wi ·∇ϕi, leads to:

∫

Ki

(−∆wi + wi) (−∆ϕi + ϕi) dx =
∫

Ki

f(−∆ϕi + ϕi) dx, ∀ϕi ∈ D(Ki).

Thus, in the distributional sense, w satisfies the following problem on any
Ki ∈ Ph:

−∆wi + wi = f. (10)

We return to (8) and (9) and again consider an arbitrary element Ki ∈ Ph
and the interface ∂Kij of this element with one of its neighbors Kj. We choose
test functions ϕ that vanish outside of Ki and everywhere on ∂Ki, except on
the element interface ∂Kij. Substituting such test functions and then applying
Green’s first identity, yields:

∫

Ki

(−∆w + w) (−∆ϕi + ϕi) dx+
∫

∂Kij

[

γi1(wi) + γj1(wj)
]

γi0(ϕi) ds

+
∫

∂Kij

γi1(ϕi)
[

γi0(wi)− γj0(wj)
]

ds =
∫

Ki

f(−∆ϕi + ϕi) dx.

By recalling (10), this expression gives the weak continuity of w and its normal
flux ∂w/∂n across the element interface ∂Kij:

γi0(wi) = γj0(wj), γi1(wi) = −γj1(wj).

Obviously, by repeating this procedure we establish the weak continuity of
w and ∂w/∂n across any element interface ∂Kij in the partition Ph, which
implies that w is in H(∆,Ω). To prove satisfaction of the Neumann boundary
condition, we take test functions ϕ that vanish outside of Ki and everywhere
on ∂Ki except on that part of ∂Ki that coincides with the boundary ΓN . By
using such test functions, we now get:

∫

Ki

(−∆w + w) (−∆ϕi + ϕi) dx+
∫

∂Ki∩ΓN
γi1(wi) γ

i
0(ϕi) ds

=
∫

Ki

f(−∆ϕi + ϕi) dx,+
∫

∂Ki∩ΓN
gγi0(ϕi) ds.

6



Again, recalling (10) reveals that the Neumann boundary condition on ∂Ki ∩
ΓN is satisfied weakly:

∫

∂Ki∩ΓN
γi1(wi) γ

i
0(ϕi) ds =

∫

∂Ki∩ΓN
gγi0(ϕi) ds.

Analogously, we can prove satisfaction of the Dirichlet condition. ¥

In the next lemma, we prove the converse of Lemma 1 and, therefore, establish
equivalence between the weak and strong formulation of the model problem.

Lemma 2 Let u ∈ H(∆,Ω) ∩H2(Ph) be the solution to problem (3), then u
is a solution to the VBVP (8).

Proof: By taking an arbitrary test function vi ∈ H2(Ki), multiplying (3) by
(−∆vi + vi), and integrating over Ki, gives us the Galerkin Least Squares
(GLS) representation of (3) on Ki:

∫

Ki

(−∆ui + ui) (−∆vi + vi) dx =
∫

Ki

f (−∆vi + vi) dx.

Summing the contributions for all elements in Ph, yields:

N∑

i=1

∫

Ki

(−∆ui + ui) (−∆vi + vi) dx =
N∑

i=1

∫

Ki

f (−∆vi + vi) dx.

By applying Green’s first identity to the integrals of ui∆vi and ∆uivi, we get:

N∑

i=1

{
∫

Ki

[∆ui∆vi + 2∇ui ·∇vi + uivi] dx

−
∫

∂Ki

[

γi1(ui)γ
i
0(vi) + γi1(vi)γ

i
0(ui)

]

ds

}

=
N∑

i=1

∫

Ki

f (−∆vi + vi) dx.

(11)
Concentrating on the edge integrals and applying the boundary conditions,

γi0(ui) = u0, on ∂Ki ∩ ΓD,

γi1(ui) = g, on ∂Ki ∩ ΓN ,

leads to:

∫

∂Ki

[

γi1(ui)γ
i
0(vi) + γi1(vi)γ

i
0(ui)

]

ds =
∫

∂Ki\ΓN
γi1(ui) γ

i
0(vi) ds

+
∫

∂Ki\ΓD
γi1(vi) γ

i
0(ui) ds +

∫

∂Ki∩ΓN
g γi0(vi) ds +

∫

∂Ki∩ΓD
γi1(vi)u0 ds.

(12)
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Since
∫

∂Ki\ΓN
γi1(ui) γ

i
0(vi) ds =

∑

∂Kij⊂∂Ki

∫

∂Kij

γi1(ui) γ
i
0(vi) ds

+
∫

∂Ki∩ΓD
γi1(ui) γ

i
0(vi) ds,

∫

∂Ki\ΓD
γi1(vi) γ

i
0(ui) ds =

∑

∂Kij⊂∂Ki

∫

∂Kij

γi1(vi) γ
i
0(ui) ds

+
∫

∂Ki∩ΓN
γi1(vi) γ

i
0(ui) ds,

we can rewrite the right-hand-side of (12), which gives:

∫

∂Ki

[

γi1(ui)γ
i
0(vi) + γi1(vi)γ

i
0(ui)

]

ds =

∑

∂Kij⊂∂Ki

∫

∂Kij

[

γi1(ui) γ
i
0(vi) + γi1(vi) γ

i
0(ui)

]

ds +
∫

∂Ki∩ΓD
γi1(ui) γ

i
0(vi) ds

+
∫

∂Ki∩ΓN
γi1(vi) γ

i
0(ui) ds +

∫

∂Ki∩ΓN
g γi0(vi) ds +

∫

∂Ki∩ΓD
γi1(vi)u0 ds.

(13)
The solution u to (3) is in H(∆,Ω) and, therefore, its trace and normal deriva-
tives across the element interfaces ∂Kij are continuous, i.e.

γi0(ui) = γj0(uj), γi1(ui) = −γj1(uj), on every ∂Kij,

where uj denotes the restriction of u to neighboring Kj, and γj0(uj) and γj1(uj)
are the traces of uj on ∂Kj. Implementing these continuity conditions in (13),
yields:

∫

∂Ki

[

γi1(ui)γ
i
0(vi) + γi1(vi)γ

i
0(ui)

]

ds =

−
∑

∂Kij⊂∂Ki

∫

∂Kij

[

γj1(uj) γ
i
0(vi)− γi1(vi) γ

j
0(uj)

]

ds +
∫

∂Ki∩ΓD
γi1(ui) γ

i
0(vi) ds

+
∫

∂Ki∩ΓN
γi1(vi) γ

i
0(ui) ds +

∫

∂Ki∩ΓN
g γi0(vi) ds +

∫

∂Ki∩ΓD
γi1(vi)u0 ds.

By substituting this result back into (11) and by noting that

N∑

i=1

∑

∂Kij⊂∂Ki

∫

∂Kij

γi1(vi) γ
j
0(uj) ds =

N∑

i=1

∑

∂Kij⊂∂Ki

∫

∂Kij

γj1(vj) γ
i
0(ui) ds,
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we finally get:

N∑

i=1

{
∫

Ki

[∆ui∆vi + 2∇ui ·∇vi + uivi] dx

+
∑

∂Kij⊂∂Ki

∫

∂Kij

[

γj1(uj) γ
i
0(vi)− γj1(vj) γ

i
0(ui)

]

ds

−
∫

∂Ki∩ΓD
γi1(ui) γ

i
0(vi) ds−

∫

∂Ki∩ΓN
γi1(vi) γ

i
0(ui) ds

}

=
N∑

i=1

{∫

Ki

f (−∆vi + vi) dx+
∫

∂Ki∩ΓN
g γi0(vi) ds +

∫

∂Ki∩ΓD
γi1(vi)u0 ds

}

.

which establishes the assertion. ¥

The proof of Lemma 2 uses a GLS representation of (3) on every element Ki.
Engel et al. [11,12] have used such GLS terms in their DGM formulations as
a stabilization to classical DGM’s (e.g. [4,9,15,5]). Here, however, they serve
as a starting point in the derivation of a DGM formulation, whose final form
is obtained by applying Green’s identities to enforce continuity and boundary
conditions.

2.4 Continuity and Coercivity Properties

The functionals B(·, ·) and L(·) satisfy continuity and coercivity properties
on the space H2(Ph). We start with an important coercivity property of the
bilinear form B(·, ·) on H2(Ph)×H2(Ph).

Lemma 3 Let B(·, ·) be the bilinear form defined in (9). Then, B(·, ·) is co-
ercive with respect to the broken Laplacian norm |||·|||,

B(v, v) ≥ 1

2
|||v|||2, ∀v ∈ H2(Ph).

Proof: Taking w = v in (9), yields:

B(v, v) =
N∑

i=1

{

‖∆vi‖2L2(Ki)
+ 2 ‖∇vi‖2L2(Ki)

+ ‖vi‖2L2(Ki)

−
∫

∂Ki∩(ΓN∪ΓD)
γi1(vi) γ

i
0(vi) ds

}

.
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Since γi0(vi) ∈ H1/2(∂K i) and γi1vi ∈ H−1/2(∂K i) for all Ki ∈ Ph, the Cauchy-
Schwarz Inequality can be applied to the boundary integrals, leading to:

B(v, v) ≥
N∑

i=1

{

‖∆vi‖2L2(Ki)
+ 2 ‖∇vi‖2L2(Ki)

+ ‖vi‖2L2(Ki)

−‖γi1(vi)‖H−1/2(∂Ki) ‖γi0(vi)‖H1/2(∂Ki),

}

.

Applying Young’s inequality, gives:

B(v, v) ≥
N∑

i=1

{

‖∆vi‖2L2(Ki)
+ 2 ‖∇vi‖2L2(Ki)

+ ‖vi‖2L2(Ki)

−1

2
‖γi1(vi)‖2H−1/2(∂Ki)

− 1

2
‖γi0(vi)‖2H1/2(∂Ki)

}

.

Recalling the trace inequality (7)1, yields:

B(v, v) ≥
N∑

i=1

{

‖∆vi‖2L2(Ki)
+

3

2
‖∇vi‖2L2(Ki)

+
1

2
‖vi‖2L2(Ki)

−1

2
‖γi1(vi)‖2H−1/2(∂Ki)

} (14)

We call upon Theorem 2.5 in [13] and state the following trace inequality for
v ∈ H2(Ki):

‖γi1(vi)‖2H−1/2(∂Ki)
≤ ‖∆vi‖2L2(Ki)

+ ‖∇vi‖2L2(Ki)
. (15)

Substituting this inequality into (14) establishes the assertion. ¥

We cannot prove coercivity of the bilinear form with respect to the broken
Sobolev norm ‖·‖H2(Ph). With the issue of continuity, we face a converse sit-
uation: continuity of B(·, ·) on H2(Ph) × H2(Ph) can be proved in the norm
‖·‖H2(Ph) but not in the norm |||·|||.

Lemma 4 The bilinear form B(·, ·) is continuous on H2(Ph) ×H2(Ph), i.e.
there exists a constant M > 0 such that:

|B(w, v)| ≤ M ‖w‖H2(Ph) ‖v‖H2(Ph) ∀w, v ∈ H2(Ph).

Proof: Since w, v ∈ H2(Ph), the zeroth and first order traces of these functions
are respectively in H3/2(∂Ki) and H1/2(∂K i), which are both subspaces of
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L2(∂K i). Thus, we can apply the Cauchy-Schwarz inequality to B(·, ·) in the
following manner:

B(w, v) ≤
N∑

i=1

{

‖∆wi‖L2(Ki) ‖∆vi‖L2(Ki) + 2 ‖∇wi‖L2(Ki) ‖∇vi‖L2(Ki)

+‖wi‖L2(Ki) ‖vi‖L2(Ki) +
∑

∂Kij⊂∂Ki

{

‖γj1(wj)‖L2(∂Kij) ‖γi0(vi)‖L2(∂Kij)

+‖γj1(vj)‖L2(∂Kij) ‖γi0(wi)‖L2(∂Kij)

}

+ ‖γi1(vi)‖L2(∂Ki∩ΓN ) ‖γi0(wi)‖L2(∂Ki∩ΓN )

+‖γi1(wi)‖L2(∂Ki∩ΓD) ‖γi0(vi)‖L2(∂Ki∩ΓD)

}

.

We can bound this inequality as follows:

B(w, v) ≤ C

√
√
√
√|||w|||2 +

N∑

i=1

{

‖γi1(wi)‖2L2(∂Ki)
+ ‖γi0(wi)‖2L2(∂Ki)

}

×
√
√
√
√|||v|||2 +

N∑

i=1

{

‖γi1(vi)‖2L2(∂Ki)
+ ‖γi0(vi)‖2L2(∂Ki)

}

, C > 0,

where |||·||| is defined as in (5). Since H1/2(∂K i) is embedded in L2(∂K i), we
can assert that:

B(w, v) ≤ C

√
√
√
√|||w|||2 +

N∑

i=1

{

‖γi1(wi)‖2H1/2(∂Ki)
+ ‖γi0(wi)‖2H1/2(∂Ki)

}

×
√
√
√
√|||v|||2 +

N∑

i=1

{

‖γi1(vi)‖2H1/2(∂Ki)
+ ‖γi0(vi)‖2H1/2(∂Ki)

}

, C > 0.

Application of the trace inequalities (7) completes the proof. ¥

Proposition 1 The linear form L(·) is continuous on H2(Ph):

∃C > 0 : L(v) ≤ C ‖v‖H2(Ph), ∀v ∈ H2(Ph), (16)

where C = C(f, u0, g).

Remark 2 (Well Posedness) Although the bilinear form B(·, ·) satisfies coer-
civity and continuity properties, we cannot invoke the Generalized Lax-Milgram
Theorem to prove existence of unique solutions of (8), for two-dimensional
problems. The coercivity property in Lemma 3 is satisfied in terms of the
norm |||·|||. For two-dimensional problems, the space H2(Ph) is not complete
with respect to this norm and completeness is an essential condition in the
Lax Milgram Theorem.
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However, for classes of problems of (3) for which we can prove there exists a
solution u ∈ H2(Ph) ∩ H(∆,Ω) (e.g. via the conventional continuous varia-
tional formulation), we know from Lemma 2 that u is a solution to the DGM
formulation (8). Uniqueness is then guaranteed, as the bilinear form is positive
definite on H2(Ph).

3 Convergence

3.1 The Discrete Problem

Let {FKi
} be a family of invertible maps defined on the partition Ph such that

every element Ki ∈ Ph is the image of FKi
acting on a master element K̂, as

shown in Figure 2.

FKi
: K̂ −→ Ki, x = FKi

(x̂). (17)

Unless stated otherwise, the sets of mappings are assumed to be affine. We
introduce a finite dimensional space of real-valued piecewise polynomial func-
tions,

Vhp =
{

v ∈ L2(Ω) : v|Ki
= v̂ ◦ F−1Ki

, v̂ ∈ P pi(K̂), ∀Ki ∈ Ph
}

⊂ H2(Ph),
(18)

where P pi(K̂) denotes the space of polynomials on K̂ of degree ≤ pi, in which
pi can have different values on different elements. Let u ∈ H2(Ph) be the
solution of (8). Then, we seek a discrete approximation uh ∈ Vhp by solving

FK
x̂2

x̂2

FK

1

1

1

0

x1

x1

x̂1

x̂1

x2

x2

1

K̂

K

K

K̂

Fig. 2. Mapping from the master elements to the physical space
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the following (discrete) variational problem:

Find uh ∈ Vhp :
B(uh, vh) = L(vh), ∀vh ∈ Vhp.

(19)

Lemma 5 The bilinear form B(·, ·) is coercive on Vhp × Vhp with respect to
the norm ‖·‖H2(Ph) (see (5)), i.e.

∃C > 0 : |B(vh, vh)| ≥ C ‖vh‖2H2(Ph)
, ∀vh ∈ Vhp.

Proof: Since Vhp ⊂ H2(Ph), we know from Lemma 3 that the bilinear form
B(·, ·) is coercive on Vhp×Vhp with respect to the norm |||·|||. For finite dimen-
sional spaces, this norm is equivalent to ‖·‖H2(Ph). Thus,

∃C > 0 : ‖vh‖H2(Ph) ≤ C |||vh|||, ∀vh ∈ Vhp,

which establishes the assertion. ¥

Since the bilinear form B(·, ·) is continuous, coercive, and positive definite
on Vhp × Vhp, existence of unique solutions uh ∈ Vhp to (19) is established
by applying the Generalized Lax Milgram Theorem. If u is then the solution
to (8), it easily follows that the approximation error eh = u− uh is governed
by the following variational problem:

Find eh ∈ H2(Ph) such that

B(eh, v) = L(v)−B(uh, v)
︸ ︷︷ ︸

Rh(v)

, ∀v ∈ H2(Ph) (20)

where Rh : H2(Ph) −→ R is the Residual Functional, which satisfies the
Galerkin orthogonality property on the space Vhp, i.e.

B(eh, vh) = Rh(v) = 0, ∀vh ∈ Vhp. (21)

3.2 A Priori Error Estimates in H2(Ph)

In this section, we derive convergence rates of the approximation error eh =
u− uh in terms of the norm ‖·‖H2(Ph). The convergence rates in lower norms

13



are derived in the next section. We start by defining a set of interpolants {πihp}
for every Ph, such that:

πihp : Hri(Ki) −→ P pi(Ki), Ki ∈ Ph, i = 1, 2, . . . , N,

πihp(vh) = vh, ∀ vh ∈ P pi(Ki),

where ri ≥ 2. We can now call upon an interpolation theorem proved in [16].

Theorem 2 For ϕ ∈ Hri(Ki), there exists C > 0, independent of ϕ, pi and
ri, and a sequence πihp(ϕ) ∈ P pi(Ki), such that:

‖ϕ− πihp(ϕ)‖L2(Ki) ≤ C
hµii
prii
‖ϕ‖Hri (Ki),

‖∇ϕ−∇πihp(ϕ)‖L2(Ki) ≤ C
hµi−1i

pri−1i

‖ϕ‖Hri (Ki), ri ≥ 1, pi ≥ 1,

‖∇2ϕ−∇2πihp(ϕ)‖L2(Ki) ≤ C
hµi−2i

pri−2i

‖ϕ‖Hri (Ki).

where µi = min(pi + 1, ri).

By extending the local interpolants πihp(.) to zero outside of Ki, we can define
a global interpolant on the whole partition Ph:

Πhp : H2(Ph) −→ Vhp, Πhp(v)
def
=

∑

Ki∈Ph

πihp(v|Ki
), v ∈ H2(Ph). (22)

Lemma 6 (Interpolation Lemma) Let u ∈ H2(Ph). Then, there exists C > 0,
independent of u, {hi} and {pi} such that the interpolation error η = u−Πhpu
can be bounded as follows:

‖η‖H2(Ph) ≤ C
hµ−2

pr−2

√
∑

Ki∈Ph

‖u‖2Hri (Ki)
, ri ≥ 2,

where r = min
Ki∈Ph

{ri}, p = max
Ki∈Ph

{pi}, h = max
Ki∈Ph

{hi}, and µ = min(p+ 1, r).

Proof: The proof of this lemma is quickly established by recalling the definition
of the norm ‖·‖H2(Ph), as given in (5), and substituting the inequalities listed
in Theorem 2. ¥

Having established convergence rates for the interpolation error, we can now
derive optimal convergence rates of the approximation error eh in the broken
space H2(Ph).
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Theorem 3 (Convergence) Let u ∈ H2(Ph) be the unique solution to the
variational problem (8) and {uh ∈ Vhp} be a sequence of approximations (19)
of u. Then, the approximation error eh = u− uh is bounded as follows:

‖eh‖H2(Ph) ≤ C
hµ−2

pr−2

√
∑

Ki∈Ph

‖u‖2Hri (Ki)
, pi ≥ 1 ; ri ≥ 2,

where r = min
Ki∈Ph

{ri}, p = max
Ki∈Ph

{pi}, h = max
Ki∈Ph

{hi}, and µ = min(p+ 1, r).

Proof: Let Πhp(·) be the interpolant operator as defined in (22). Then we
introduce two functions η and ξ, such that the approximation error can be
written as eh = η − ξ, where η = u − Πhpu and ξ = uh − Πhpu. Note that
ξ ∈ Vhp and that the interpolation error η is in H2(Ph). By using the triangle
inequality, we obtain:

‖eh‖H2(Ph) ≤ ‖η‖H2(Ph) + ‖ξ‖H2(Ph). (23)

Recalling the coercivity property of Lemma 5 leads to:

‖ξ‖2H2(Ph)
≤ C B(ξ, ξ).

By applying the orthogonality property (21) and the continuity of the bilinear
form B(·, ·) (see Lemma 4), we get:

‖ξ‖2H2(Ph)
≤ C B(η, ξ) ≤ C ‖η‖H2(Ph)‖ξ‖H2(Ph)

Thus, returning to (23), we can conclude:

‖eh‖H2(Ph) ≤ C‖η‖H2(Ph).

We finish the proof by applying Lemma 6. ¥

Remark 3 Take p = 1. From Theorem 3, µ = 2 and µ−2 = 0, which implies
that the approximate solutions {uh} do not converge for h refinements.

3.3 The Aubin-Nitsche Lift - A Priori Error Estimates in Lower Norms

For p ≥ 2, convergence to the solution of the target problem (8) is guaranteed
by Theorem 3, but the rates are suboptimal in terms of the H1(Ph) and L2(Ω)
norms. We employ a technique introduced by Aubin [17] and Nitsche [18] to
prove that, under certain conditions, the approximation error also converges
optimally in these lower norms. First, we introduce broken Hilbert spaces on
the polygon partitions {Ph}:

Hσ(Ph) =
{

v ∈ L2(Ω) : v|Ki
∈ Hσ(Ki), ∀Ki ∈ Ph

}

, 0 ≤ σ ≤ 1, (24)
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on which we define broken Sobolev norms,

‖v‖Hσ(Ph) =

√
√
√
√

∑

Ki∈Ph

‖vi‖2Hσ(Ki)
, v ∈ Hσ(Ph). (25)

We follow [17,18] by introducing the functionals q(·) in the dual spaceH−σ(Ph),
for which we can prove that there exist Riesz-type representative functions wq

in the following subspace of H2(Ph):

H2
00(Ph) =

{

v ∈ H2(Ph) : γi0(vi) = 0, γi1(vi) = 0, ∀Ki ∈ Ph
}

⊂ H2(Ph).

Lemma 7 For every q ∈ H−σ(Ph), there exists a unique wq ∈ H2
00(Ph), such

that:

B(v, wq) = q(v), ∀v ∈ H2(Ph) (26)

Proof: If we recall the coercivity property of Lemma 3, we get:

sup
v∈H2(Ph)/{0}

|B(v, w)|
‖v‖H2(Ph)

≥ 1

2

|||w|||2
‖w‖H2(Ph)

∀w ∈ H2
00(Ph)/{0}.

For functions that belong to H2
00(Ki), the norm ‖∆wi‖L2(Ki) is equal to the

norm ‖∇2wi‖L2(Ki) (e.g. see [13]). From (5) then follows that the norms
‖·‖H2(Ph) and |||·||| are identical for functions that belong to H2

00(Ph). Hence,
the above expression gives us the Inf-Sup condition for the bilinear form B(·, ·)
on H2(Ph)×H2

00(Ph):

sup
v∈H2(Ph)/{0}

|B(v, w)|
‖v‖H2(Ph)

≥ 1

2
‖w‖H2(Ph), ∀w ∈ H2

00(Ph)/{0}.

Considering that the bilinear form is also positive definite and continuous (see
Lemma 4), we can call upon the Generalized Lax Milgram Theorem to assert
that there exists a unique solution wq ∈ H2

00(Ph). ¥

By duality, the norm of the error in the spaces Hσ(Ph), 0 ≤ σ ≤ 1, is closely
related to the functions wq, i.e.

‖eh‖Hσ(Ph)
def
= sup

q∈H−σ(Ph)

|q(eh)|
‖q‖H−σ(Ph)

= sup
q∈H−σ(Ph)

|B(eh, wq)|
‖q‖H−σ(Ph)

.

Let Πhp(·) ∈ Vhp denote the global interpolation operator as defined in (22).
Then, by applying the Galerkin orthogonality property (21) and continuity of
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the bilinear form, we can rewrite this expression as:

‖eh‖Hσ(Ph) ≤ C ‖eh‖H2(Ph) sup
q∈H−σ(Ph)

‖wq − Πhpwq‖H2(Ph)

‖q‖H−σ(Ph)
, C > 0.

By applying the interpolation Lemma 6 and convergence Theorem 3, we can
further bound the error,

‖eh‖Hσ(Ph) = C
hµ+ν−4

pr+s−4

√
∑

Ki∈Ph

‖u‖2Hri (Ki)
sup

q∈H−σ(Ph)

√ ∑

Ki∈Ph

‖wq‖2Hsi (Ki)

‖q‖H−σ(Ph)
,
(27)

where h, p, r, ri, and µ are defined in Theorem 6, and s = min
Ki∈Ph

{si} and

ν = min(p + 1, s). So convergence of the approximation error in the lower
H1(Ph) and L2(Ω) norms is governed by the regularity of the solutions wq. To
determine this regularity, we call upon a regularity theorem that is based on
the work on polygonal domains by Grisvard [19].

Lemma 8 Let each partition Ph consist of convex polygons {Ki}, i = 1, 2, . . . , N ,
and each element Ki have N

i
c corners with angles ω

i
j, j = 1, 2, . . . , N i

c (see Fig-
ure 3). Let wq be the solution to (26) for a given q ∈ H−σ(Ph), 0 ≤ σ ≤ 1.
If the following characteristic equations each have no root λ ∈ C other than
λ = −I on the line (σ − 2)I (where I denotes the imaginary variable):

sinh2(λωi
j) = λ2 sin2(ωi

j), j = 1, . . . , N i
c, i = 1, . . . , N. (28)

Then, every wq belongs to H4−σ(Ph). Otherwise, the functions wq are in
H3−σ(Ph).

Proof: This lemma is a result of Theorem 7.2.2.3 and Remark 7.2.2.4 in the
work by Grisvard [19]. These establish the regularity of solutions to the bi-
harmonic equation and can be applied to establish the regularity of the func-

Ki

ωi
1

ωi
2

ωi
3

∂Ki

Fig. 3. Corner angles of the polygons.
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tions wq, as these satisfy a bi-harmonic equation on each element Ki:

∆∆wq = Φ, ∀Ki ∈ Ph, (29)

where Φ ∈ H−σ(Ki) and homogeneous Dirichlet and Neumann conditions hold
on ∂Ki. To prove this assertion, we start by substituting test functions v = ϕ
into (26) whose restrictions ϕi to Ki belong to D(Ki). Thus, we get

〈∆ϕi, ∆wq〉+ 2〈∇ϕi, ∇wq〉+ 〈ϕi, wq〉 = 〈ϕi, q〉ϕi, ∀ϕi, ∀Ki ∈ Ph,

where 〈·, ·〉 denotes the duality pairing in D(Ki)×D(Ki)
′. Application of the

definition of the distributional derivative, then gives:

〈ϕi, ∆∆wq − 2∆wq + wq〉 = 〈ϕi, q〉, ∀ϕi, ∀Ki ∈ Ph.

Comparison with (29) reveals that Φ = q + 2∆wq − wq. Since q ∈ H−σ(Ki)
and ∆wq, wq ∈ L2(Ki), Φ must belong to H−σ(Ki). The proof of this lemma is
completed by applying Theorem 7.2.2.3 and Remark 7.2.2.4 in [19] to (29) and
by noting that the functions wq satisfy homogeneous Dirichlet and Neumann
boundary conditions on ∂Ki and that every polygon Ki is convex (i.e. no re-
entrant corners). ¥

We first use the result of Lemma 8 to derive h and p convergence rates in the
broken space H1(Ph).

Theorem 4 (Convergence in H1(Ph)) Let u ∈ H2(Ph) be the unique solution
to the variational problem (8) and {uh ∈ Vhp} be a sequence of approxima-
tions (19) using families of regular partitions {Ph} of convex polygons. Then,
the approximation error eh = u−uh is bounded in the H1(Ph) norm (25), i.e.

∃C > 0 : ‖eh‖H1(Ph) ≤ C
hµ−1

pr−1

√
∑

Ki∈Ph

‖u‖2Hri (Ki)
, p ≥ 2, ri ≥ 2,

where r = min
Ki∈Ph

{ri}, p = max
Ki∈Ph

{pi}, h = max
Ki∈Ph

{hi}, and µ = min(p+ 1, r).

Proof: We return to (27) and set σ = 1:

‖eh‖H1(Ph) = C
hµ+ν−4

pr+s−4

√
∑

Ki∈Ph

‖u‖2Hri (Ki)
sup

q∈H−1(Ph)

√ ∑

Ki∈Ph

‖wq‖2Hsi (Ki)

‖q‖H−1(Ph)

. (30)

We now call upon Lemma 8 to determine the regularity of the functions wq,
which means that we have to find the roots λ ∈ C to the following character-
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istic equations on the line −I:

sinh(λωi
j) = ±λ sin(ωi

j), j = 1, . . . , N i
c, i = 1, . . . , N.

Lemma 7.3.2.4 in [19] reveals that the above equations have only one root
λ = −I on the line −I. From Lemma 8 we then conclude that the functions
wq are in H3(Ph). This implies that s ≥ 3 and, with p ≥ 2, we obtain ν ≥ 3.
Returning to (30), this gives:

‖eh‖H1(Ph) ≤ C
hµ−1

pr−1

√
∑

Ki∈Ph

‖u‖2Hri (Ki)
sup

q∈H−1(Ph)

‖wq‖H3(Ph)

‖q‖H−1(Ph)

, (31)

To bound the term involving the supremum, we return to (26) and rewrite
this as follows:

〈v, B∗wq〉 = 〈v, q〉, ∀v ∈ H2(Ph),
where B∗ : H2

00(Ph) −→ H−2(Ph) is a linear operator associated with the
bilinear form B(·, ·). Since we know that the bilinear form is continuous on
H2(Ph)×H2

00(Ph), the operator B∗(·) is continuous on H2
00(Ph)∩H3(Ph), i.e.

‖B∗wq‖H−2(Ph) ≤ C ‖wq‖H2(Ph) ≤ C ‖wq‖H3(Ph).

We have established that for every q ∈ H−1(Ph) there exists a unique wq ∈
H3(Ph)∩H2

00(Ph). Hence, B∗(·) is bijective fromH3(Ph)∩H2
00(Ph) toH−1(Ph)∩

H−2(Ph). Since the restriction of B∗(·) to H3(Ph) is both continuous and bi-
jective, the Banach Theorem states that the inverse of the restriction of B∗(·)
is continuous. Thus, there exists C > 0, independent of q(·), such that:

‖wq‖H3(Ph) = ‖B∗−1q‖H3(Ph) ≤ C ‖q‖H−2(Ph), ∀wq ∈ H3(Ph) ∩H2
00(Ph).

By backsubstituting this result into (31), we conclude the proof. ¥

Thus, we have proved optimal h and p convergence of the error in H1(Ph), for
p ≥ 2, if convex polygonal elements are used. Optimal h and p convergence in
L2(Ω) is also possible but it depends on the shape of the polygons in the par-
tition Ph, in particular the value of the corner angles. The following theorem
is a consequence of Lemma 8 and states a necessary condition on the corners
of the polygons in order to obtain optimal convergence rates in L2(Ω).

Theorem 5 (Convergence in L2(Ω)) Let u ∈ H2(Ph) be the unique solution
to the variational problem (8) and {uh ∈ Vhp} be a sequence of approxima-
tions (19) using families of regular partitions {Ph} of convex polygons. Let N i

c

denote the number of corners of an element Ki and ωi
j denote the j

th corner
angle of this element. If the following characteristic equations have no roots a
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in R \ {0},

tanh(aωi
j) =

1

2
tan(2ωi

j) a, j = 1, 2, . . . , N i
c, i = 1, 2, . . . , N. (32)

Then, the approximation error eh = u−uh is bounded in the L2(Ω) norm such
that ∃C > 0:

‖eh‖L2(Ω) ≤ C
hµ−1

pr

√
∑

Ki∈Ph

‖u‖2Hri (Ki)
, p = 2, ri ≥ 2,

‖eh‖L2(Ω) ≤ C
hµ

pr

√
∑

Ki∈Ph

‖u‖2Hri (Ki)
, p ≥ 3, ri ≥ 2,

where r = min
Ki∈Ph

{ri}, p = max
Ki∈Ph

{pi}, h = max
Ki∈Ph

{hi}, and µ = min(p + 1, r).

Otherwise, the error is bounded by the following suboptimal bounds:

‖eh‖L2(Ω) ≤ C
hµ−1

pr−1

√
∑

Ki∈Ph

‖u‖2Hri (Ki)
, p ≥ 2, ri ≥ 2,

Proof: Since ‖·‖L2(Ω) ≤ ‖·‖H1(Ph), the error in L2(Ω) converges at least at the
same rate as in H1(Ph). To obtain a lift in convergence rates, we follow the
proof of Theorem 4, recall (27), and set σ = 0, i.e.:

‖eh‖L2(Ω) = C
hµ+ν−4

pr+s−4

√
∑

Ki∈Ph

‖u‖2Hri (Ki)
sup

q∈L2(Ω)

√ ∑

Ki∈Ph

‖wq‖2Hsi (Ki)

‖q‖L2(Ω)

.

The term involving the supremum can be bounded in the same manner as
previously done in the proof of Theorem 4, but we again have to determine
the regularity of the functions wq. In order to do so, we call upon Lemma 8
which states that for σ = 0 we need to find the roots λ ∈ C on the line −2I
of the following characteristic equations:

sinh(λωi
j) = ±λ sin(ωi

j), j = 1, . . . , N i
c, i = 1, . . . , N.

By expanding λ = a− 2I, a ∈ R, we get sets of equations that govern the real
and imaginary parts of the above equations,

sinh(aωi
j) cos(2ω

i
j) = ±a sin(ωi

j),

cosh(aωi
j) sin(2ω

i
j) = ±2 sin(ωi

j).
(33)
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The value a = 0 is never a root of these equations for 0 < ωi
j < π (no re-entrant

corners), as substitution of a = 0 into (33)2 gives:

sin(2ωi
j) = ±2 sin(ωi

j) ⇒ cos(ωi
j) = ±1 ⇒ ωi

j = 0, π.

So we can multiply (33)2 by a, (33)1 by 2, and subtract the resulting equa-
tions, which yields:

2 sinh(aωi
j) cos(2ω

i
j) = ±a cosh(aωi

j) sin(2ω
i
j), a 6= 0,

which we can rewrite as follows:

tanh(aωi
j) =

1

2
tan(2ωi

j) a, a 6= 0.

Thus, the above equations are equivalent with (28), with λ = a− 2I. If there
are no roots a other than a = 0, then according to Lemma 8 the functions wq

are in H4(Ph). Thus, for p = 2, we obtain ν = 3, and for p ≥ 3, we get ν = 4,
which establishes the assertion. ¥

Corollary 6 Let Ph be as defined in Theorem 5. In addition, assume that all
corners of the polygons are equal to π/2. Then, for p ≥ 3, the error eh = u−uh
converges optimally in L2(Ω), i.e.

‖eh‖L2(Ω) ≤ C
hµ

pr

√
∑

Ki∈Ph

‖u‖2Hri (Ki)
, p ≥ 3, ri ≥ 2,

where r = min
Ki∈Ph

{ri}, p = max
Ki∈Ph

{pi}, h = max
Ki∈Ph

{hi}, and µ = min(p+ 1, r).

Proof: This is an immediate consequence of Theorem 5, as substitution of
ωi
j = π/2 into (32) yields:

tanh
(
aπ

2

)

= 0,

which has only one root a = 0. ¥

From Theorem 5 we can conclude that in L2(Ω) we always obtain suboptimal h
convergence for p = 2. For p ≥ 3, optimal rates can be obtained, but the corner
angles have to satisfy the condition (32). This condition is satisfied for strictly
rectangular meshes, but such meshes rarely occur in practical applications.
Therefore, only in few occurrences will optimal convergence be guaranteed by
Theorem 5.
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4 Numerical Verifications

4.1 One Dimensional Tests

We consider a one dimensional version of problem (3):

−d
2u

dx2
+ u = x+ 1, for 0 < x < 1,

u(0) = 0, u(1) = 1.

The exact solution to this problem is:

u(x) = x+ 1− ex + e1−x

1 + e
.

For p = 2, 3, 4, 5, solutions {uh} of (19) are computed by performing successive
uniform h refinements. In Figure 4, the convergence results are shown for the
norm ‖.‖H2(Ph) (5), where the h convergence rates are computed according the
following rule:

ρh =
log

(

eih/e
i+1
h

)

log 2

The observed convergence rates in Figure 4 of order p − 1 confirm the rates
that are predicted for convergence in H2(Ph) (see Theorem 3). In Figures 5
and 6, the results are illustrated for the H1(Ph) and L2(Ω) norm, respectively.
The h convergence rates inH1(Ph) are of order p and agree with the prediction
in Theorem 4. In L2(Ω), the convergence rates are of order p + 1, for p ≥ 3,
and of order p for p = 2. These rates also confirm the rates predicted in
Theorem 5 (for one-dimensional versions of (26), the dual solutions wq are
always in H4(Ph) for q(·) that belong to L2(Ω)).
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Fig. 4. Norm |||·||| of the approximation error (left) and uniform h convergence rates
(right) versus number of degrees of freedom - 1D results.
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Fig. 5. H1(Ph) norm of the approximation error (left) and uniform h convergence
rates (right) versus number of degrees of freedom - 1D results.
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Fig. 6. L2(Ω) norm of the approximation error (left) and uniform h convergence
rates (right) versus number of degrees of freedom - 1D results.
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4.2 Two Dimensional Tests

Next, we consider the two-dimensional test case on the unit square Ω = (0, 1)×
(0, 1):

−∆u+ u = 0, in Ω,

u(x, y) =







0, for x = 0, 0 ≤ y ≤ 1,

0, for x = 1, 0 ≤ y ≤ 1,

0, for y = 0, 0 ≤ x ≤ 1,

sin(2πx) sinh(
√
1 + 4π2), for y = 1, 0 ≤ x ≤ 1,

The exact solution to this boundary value problem is:

u(x) = sin(2πx) sinh(
√
1 + 4π2y) (34)

For p = 2, 3, 4, 5, solutions {uh} of (19) are computed by performing succes-
sive uniform h refinements. In Figures 7 and 8, the convergence results are
shown for the norms |||.||| and ‖·‖H2(Ph), respectively. Note that the norm |||·|||
represents a broken Laplacian norm on Ph, whereas ‖·‖H2(Ph) uses the com-
plete local Sobolev norm in H2, i.e. it includes the local L2 norm of the cross
derivatives ∂2u/∂x∂y (see also (5)). The results for the norm ‖·‖H2(Ph) confirm
the predicted h convergence rates of Theorem 3. The convergence rates in the
norm |||·||| are higher in the pre-asymptotic range but converge to the same
rates as those observed for the norm ‖·‖H2(Ph).

Figure 9 shows the convergence of the error in theH1(Ph) norm. The predicted
rates, stated in Theorem 4, are confirmed by exhibiting convergence rates of
order p.

Since the mesh consists of rectangular elements, Theorem 5 and Corollary 6
assert that the convergence rates in L2(Ω) should be of order 2, for p = 2, and
p + 1, for p ≥ 3. The convergence results shown in Figure 5 agree with this
assertion.

We consider an additional test problem on the quadrilateral domain depicted
in Figure 11. The domain partitions {Ph} are performed as illustrated in this
figure. Thus, the skewness of the elements is determined by the angle θ. The
same Poisson equation as in the previous example is solved on the quadrilateral
and the Dirichlet boundary conditions are applied such that the solution is as
given in (34).

In Figure 12, the uniform h convergence rates are presented for θ = π/6. For
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Fig. 7. Norm |||·||| of the approximation error (left) and uniform h convergence rates
(right) versus number of degrees of freedom - 2D results.
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Fig. 8. H2(Ph) norm of the approximation error (left) and uniform h convergence
rates (right) versus number of degrees of freedom - 2D results.
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Fig. 9. H1(Ph) norm of the approximation error (left) and uniform h convergence
rates (right) versus number of degrees of freedom - 2D results.
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Fig. 10. L2(Ω) norm of the approximation error (left) and uniform h convergence
rates (right) versus number of degrees of freedom - 2D results.
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convergence in H2(Ph) and H1(Ph), both figures show no noticeable difference
with the results given in Figures 7 through 9. As expected, the skewness of the
mesh does not affect the convergence of the error in these norms. However,
the assertion of Theorem 5 for the convergence in the L2(Ω) norm of skewed
meshes, is only confirmed in part. The corner angles in the mesh are either π/6
or 5π/6. For the latter of these, the characteristic equations (32) have nonzero
roots. Thus, the convergence rates in L2(Ω) should be suboptimal according
Theorem 5. For the even order approximations, the suboptimal rate of order p
is indeed observed, but for odd order approximation the optimal rate of p+1
is still obtained. This even-odd behavior in L2(Ω) has also been observed for
the DGM introduced by Oden, Babuška, and Baumann [4], but in their results
the suboptimal L2(Ω) convergence also emerges for rectangular meshes.

5 Concluding Remarks

A new DGM is introduced for the two-dimensional reaction-diffusion problem
with prescribed Neumann and/or Dirichlet boundary conditions. The DGM
formulation employs local second order derivatives, satisfies a local conser-
vation property, and the corresponding bilinear form satisfies coercivity and
continuity conditions on the broken Sobolev space H2(Ph). Due to the coer-
civity property, the formulation is numerically stable and does not require any
additional penalization.

We have derived a priori error estimates that show that optimal h and p
convergence is obtained in H2(Ph). If the mesh consists of convex polygons,
then we can also prove optimal convergence in H1(Ph). These assertions are
confirmed by one- and two-dimensional experiments.

θ

x

y

0

1

1

Γ2

Γ3

Γ4

Γ1

Fig. 11. Mesh geometries.
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Fig. 12. Uniform h convergence rates versus number of degrees of freedom - 2D
results - Mesh distortion of 30o.
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In L2(Ω), we always obtain a suboptimal h convergence rate of order p for
p = 2. For p ≥ 3, we can prove optimal h and p convergence if the corner
angles of the polygons have no roots other than zero for the characteristic
equation (32). If we employ strictly rectangular meshes, then this condition
is satisfied and optimal convergence for p ≥ 3 is obtained and confirmed by
numerical results. In practical applications, meshes consist of elements with
various shapes and the condition (32) is most likely not satisfied. In those
cases, we can only prove suboptimal convergence rates. Remarkably, for odd
order approximations on skewed meshes, numerical results show that optimal
convergence is obtained, nevertheless. This ‘odd-even’ behavior of the error in
L2(Ω) is also observed in other DGM’s (e.g. see [7]).
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[16] I. Babuška, M. Suri, The hp-version of the finite element method with
Lagrangian multipliers, Mathematical Modeling and Numerical Mathematics
21 (1987) 199–238.

[17] J. P. Aubin, Analyse Fonctionelle Appliquée, Presses Universitaires de France,
1987.

[18] J. Nitsche, On Dirichlet problems using subspaces with nearly zero boundary
conditions, in: A. K. Aziz (Ed.), The Mathematical Foundations of the Finite
Element Method with Applications to Partial Differential Equations, Academic
Press, 1972, pp. 603–627.

[19] P. Grisvard, Elliptic problems in nonsmooth domains, in: Monographs and
Studies in Mathematics, Vol. 24, Pitman Advanced Publishing Program, 1985.

31


